Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity.
نویسندگان
چکیده
The role of cholesterol in Alzheimer's disease (AD) has been linked to the generation of toxic amyloid beta peptides (Abeta). Using genetic mouse models of cholesterol loading, we examined whether mitochondrial cholesterol regulates Abeta neurotoxicity and AD pathology. Isolated mitochondria from brain or cortical neurons of transgenic mice overexpressing SREBP-2 (sterol regulatory element binding protein 2) or NPC1 (Niemann-Pick type C1) knock-out mice exhibited mitochondrial cholesterol accumulation, mitochondrial glutathione (mGSH) depletion and increased susceptibility to Abeta1-42-induced oxidative stress and release of apoptogenic proteins. Similar findings were observed in pharmacologically GSH-restricted rat brain mitochondria, while selective mGSH depletion sensitized human neuronal and glial cell lines to Abeta1-42-mediated cell death. Intracerebroventricular human Abeta delivery colocalized with mitochondria resulting in oxidative stress, neuroinflammation and neuronal damage that were enhanced in Tg-SREBP-2 mice and prevented upon mGSH recovery by GSH ethyl ester coinfusion, with a similar protection observed by intraperitoneal administration of GSH ethyl ester. Finally, APP/PS1 (amyloid precursor protein/presenilin 1) mice, a transgenic AD mouse model, exhibited mitochondrial cholesterol loading and mGSH depletion. Thus, mitochondrial cholesterol accumulation emerges as a novel pathogenic factor in AD by modulating Abeta toxicity via mGSH regulation; strategies boosting the particular pool of mGSH may be of relevance to slow down disease progression.
منابع مشابه
Neurobiology of Disease Mitochondrial Cholesterol Loading Exacerbates Amyloid Peptide-Induced Inflammation and Neurotoxicity
Anna Fernández,1,2,3,4 Laura Llacuna,1,2,3,4 José C. Fernández-Checa, 1,2,3,4* and Anna Colell1,2,3,4* 1Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas and Unidad de Hepatologı́a, Hospital Clinic i Provincial, 2Centro de Investigaciones Biomédicas Esther Koplowitz, 3Centro de Investigación Biomédica e...
متن کاملP135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کاملResearch Paper: The Effect of Callistephin on Amyloid Beta-Induced Neurotoxicity in the Hippocampus of Male Rats
Introduction: Oxidative stress plays a key role in the pathophysiology of the Alzheimer's disease and it seems that antioxidants may slow the progress of the disease. The current study aimed at investigating the possible protective effects of callistephin (a natural flavonoid) against amyloid β (Aβ)-induced neurogenesis deficits in rats. Methods: Adult Wistar male rats in the current...
متن کاملInhibition of Alzheimer's amyloid-beta peptide-induced reduction of mitochondrial membrane potential and neurotoxicity by gelsolin.
Amyloid-beta (A beta) peptides play a central role in the development of Alzheimer's disease. They are known to induce mitochondrial dysfunction and caspase activation, resulting in apoptosis of neuronal cells. Here we show that human cytoplasmic gelsolin inhibits A beta peptide-induced cell death of neuronally differentiated rat pheochromocytoma (PC-12) cells. We also show that the segment 5 b...
متن کاملBerberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats
Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH) triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 20 شماره
صفحات -
تاریخ انتشار 2009